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Abstract

• We examine the relationship between the filter and the subgrid-scale (SGS) model for large-eddy
simulations, in gaer_l, and for those with dynamic SGS models, in particular. From a review of the
literature, it would appear that many practitioners of LES consider the link between the filter and the
model more or less as a formality of little practical effect. In contrast, we will show that the filter and
the model are intimately linked, that the Smagorinsky SGS model is appropriate only for filters of first-
or second-order, and that the Smagorinsky model i_ inconsistent with spectral tlt;ers. _Moreeveri tile
Germano identity is shown to be both problematic and unnecessary for the development of dynamic
SGS models. Its use obscures the following fundamental realization: For G suitably chosen j_lter, the
computible resolved turbulent stresses, properly scaled, elosel_i approzimate the SGS 8tres_wa.

1 Introduction

By definition, direct numerical simulation (DNS) is the numerical solution of the Navier-Stokes equations
without recourse to empirical models. In concept, the fluid motions are resolved down to the Kolmogorov

length scale, at which eddies succumb to viscous dissipation. In general, the computational workload for

fully-resolved DNS scales as Re s, where Re is the Reynolds number. Consequently, for the complex, high-

Reynolds-number flows of engineering interest, the computational requirements DNS are staggering and

prohibitive.

In contrast, in large-eddy simulation (LES), the larger scales of motion are resolved in space and time
on a moderately coarse grid; however, the effect of the subgrid-scale (SGS) motions on the evolution of the

larger scales is modeled. In practice, the decomposition into resolved and unresolved scales is accomplished

by a spatial (temporal) filtering operation with an associa_d cutot_ length (time) scale A.

First introduced in the 1960's, LES has experienced a_esurgence of interest since 1991, when dynamic

SGS modeling was proposed by Germano and coworkers6_ - The advantages and difficulties associated with

dynamic SGS models are now well established, and space does not permit elaboration. However, it is fair to

say that the promise of dynamic modeling has not been fully realized largely because many of the proposed

fixes to the shortcomings of dynamic models involve cousi_erable additional complexity and computational
i

overhead.

Here, our purpose is to examine the connection betw_n the choice of the filter and the subgrid-scale

(SGS) model, with an eye toward the simplification of dynamic SGS models.

Prom a review of the literature, it would appear th_ many practitioners of LES consider the link between
the filter and the model more or less as a _rmality of little practical _ect. Surprisingly little is written

on this topic, Piomelli et al.9 and Aldama 1 ex_tedj. Specifically, regarding the conventional practice of

LES, Piomelli et al.9 observed: Kin the past, ho_ i the :choices of model and filter have been regarded as
completely independent." Recognizing that the behavlor of the SGS model strongly depends on the choice of
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the filter, they attempted to address the issue of filter-model consistency on the basis of physical arguments
and a pr/or/tests, which involve comparisons of the exact and modeled SGS stresses computed by fully
resolved DNS. Here, we approach filter-model consistency from a mathematical point of view. From the
present _Come _ number of revelationbl _eof which run counter _ _nventional wisdom.

In the next section, we discuss aspects of linear filters in general, focusing on their order properties. In

the third section, starting from the Germ_tity _ _the context of a dynamic SGS model, we derive
a simple but accurate approximation for the_tml_ strm, In the fourth section, we derive a similar result

without first appealing to the Germano l_de_tity._![n _e f_th sect!on, we briefly discuss the implications of
these results. Conclusions are summ_in the finalsection. ::

2 Linear Filter Operators

Like dilferential operators, filter operators may_bd:Mtl_ continuous or discrete. Here, for brevity, we
consider only ¢outinuotm filtem (which-m a_o _t_ __)_:Im_w_, tlm coaduaio_drswn for
continous AlteN @eneraliae immedi4ttely tolhmtr _ fli__, also for brevity, we consider only
time-din fflb_. However, the __ _ apply ___ U well

Let j'(t,_ bea ContOrts function_ai_ __,i_td4et_A,the _"_ wldth_ denote a charac-

teristic timescale associated with thetemp(xal Linear Biter F_f(t),A]. As a specificexample, consider the
continuous, causal filter given by the integral equatkm

[f(t,_),A] - 1Z f_4/0", z')d_" (1)
F

From firstprinciplesofthe Calculus,itisreadilyshown thatlim4-,oF[f(t),A] -/(t). On _he otherhand,

fora finitewindow A, the time-domainfilterabove tendsto removeoec'dlationsofhighfrequencyrelative

toA whilepreservinglow-frequencyoscillations,which_ a "low-pnss"falter.For applicationstoLES,
we consideronlylow-passfilters.

_d_:t ofa filterismost apparentin_ _ _q_oeach filterisassociated_ tranderfuncthm

H(fl) that qintar!ties the amplitude and phase effects of thA _ on oscillations of dimensionless fmquenc7
f_ .= W_, For example, the tr_ function _wi_= Eq. 1, shon:i_ Fig. 1, is readily obtained
by directly integrating F(et't, A) for arbitrary w. Figure 1 reveals some undesirable traits of the filter: the

amplitude decay is not monotonic, the amplitude envelope decays slowly (like 1/f_), and, consequently, the
cutoff is gradual. _.... _:
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__ _ to dl_erence o_ators, to each fil_ _" is aIW_cist,_, an order-property _t_h_t

quantifies the behavior of the filter as fl tends toward zero. The order property is revealed by the
non-zero term in A in the Taylor-series _n of the filtb_. _ example, for a function of time only, the
_tylor-ser[es expansion with respect to A of the filter ofEqT! '_: =

F[I(t),A]= f(t)- _f'(t)+ A_-'/'(t)+ O(A 3) (2)



A class of causal time-domain filters more suitable for LES than Eq. 1 is that of the so-called Butterworth

filters. Figure 2 compares the moduli of the transfer functions of prototypical Butterworth analog (BA) low-

pass filters of orders 1, 2, and 4, each of which has a nominal cutoff frequency f_ -- 1. The properties and
design constraints of the first- and second-order low-pass BA prototypes can be found in Strum and Kirk 12.

The fourth-order BA prototype was developed by the author using Mathematica. The prototype BA filters

shown in Fig. 2 are readily discretized and adapted to an arbitrary cutoff No.
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The order of a filter is closely related to the flatness of its transfer function at n = 0. In general, fora

tlter of order n, H(k)(N)l_ffi0 = 0 for all 0 < k _< n, but H("+I)(0) p 0. In particular, Butterworth filters

mauifest several desirable properties for applications to LES: 1) stability, i.e., IH(N)I _< 1; 2) their transfer
functions decay monotonically with increasing fl, and 3) their transfer functions are,maximally __ near

N - 0. For comparison, Fig. 2 also presents the idealized transfer function of an analog spectral filter, which
can be considered of infinite order.

For brevity in future discussions, let an overbar denote filtered quantities; that is, / - FLf(t), A] for

some fixed A. From Figs. 1 and 2 it can be inferredthat, except for the spectral filter, _ _/. It is also

clear that the spectral ideal is more closely approximated as the order n increases. As a re_ult, _order

temporal:filters are problematic for practical applications to LES, because they necessitate the storage of

relatively more time history. This may be a principal reason that, to date, time-domain filtering has been
avoided by practitioners of LES, as hinted by Moln and Jimenez8 in their survey paper.

One might naively assume (as did the author originally) that higher order is better, Oneof the more

significant results of this work is to show that, in the context of LES, lower order filters are desirable for

several reasons. This is particularly good news if one wants to consider the application of time-domain filters

to LES, for example, as in Pruett 10.

To develop the results of the next sections, we make use of the Taylor series expansions of filter operators.

For example, recall Eq. 1 above. More generally, assuming sufficient differentiability of u, any time-domain

filter can be expanded as

_(t, :_, A) __.U "l"CI.AU' "}"C2A21_"4" c3AZu _"4" ... (3)

where p_es denote temporal partial derivatives. For _patially multi-dimensional filter operators, S_mfi!"ar

expansio_ could be derived; however, their Taylor exp_sions Would, of course, be multi-dimensional, in

general, a filter is of order n in A provided c_ _0, but Ch - 0 for 1 _< k < n. Thus, Eq. 1, for example,
defines a first-order filter. Similarly, one can show that both Gaussian and tophat physical-space filters are

first order.

3 Conventional Dynamic SGS Modeling

In tensor notation, the linearly filtered Navier-Stokes equations are given by

_-- 0
az_

(4)



_ _ at + Gj): 1 _ +vV_ + _r O (5)

where repeated indices imply Sm_tion, and _o is the SGS (reside_ __n _tensor defined as

Equation 6 is exact; inexactness enters only when the rij aremodeled.We focus now on dynamic modeling
of the residual stresses.

Dynamic models 6 of the SGS stress tensor are rooted in t__ identity and typically exploit
successive (spatial) "grid" and "test" filtering operations with amocisted length scales [ and/, re6pectively.

To transJ_on to temporal fll_dng, ._ expticitl =y assume that _ 7_ _ r, where r > 0 is. a parameter.
Typically, r _' 2. The Germaao identity relates the resolved tur_tflent stress tensor £_j and the "subgrid"

and "subtest" stress tensors, l"ij and TU, respectively. Specifically,

£,_ = T,_- _,_ (7)

where
-: - (s)

The_ ldm_, U _; .... __ _ ...... -moreover,its kf_=h4nd& ts_le. It remainsto modeleachofthe
onthe w ch S ky eddy-v o tymode,

namely

_, I_I_ (I0)_ - _ _ 2CZ_ _

acteri_e!_SC_ ssS_iatedwi_thegrid mt_, sad C k_ _ _-_t _ __. In
general, a criticism of eddy-Viscosity modek is their implicit m__ the prin_pal axes _ _ re_d-

u
expefime_tJa _ turbuknt_omd bo___com_n _d _ fo_d
comid_able _ _ _ _ _ _ im_d_ a_4r_all_ They

concluded that eddy_y models ate inappropriate for such flora. Moin and Jimene_ 8 propcm a more

gener_lly applicable model, for which each strms-tensor component has its own coeliicient, namely

1

where

/_ - 2,_=l_l_J,_ (12)

We wm re_ to _q. 1_u the "__ _: n_re- mode_" _ __m_._-st_ tenor is
Dmtmetric; heace, lix _t ___be __I. ___ciple, _tbc_ecoelllclents can be
_y d_ byfl_ _c procedure of_o et_ _,. ada_tedtothegeneralized model by

Mo'm and JimenedS.' We briefly describe the procedure beloW.

It is now assumed that the subtest stresses can also be modeled by Eq. 11 with the same coefficients C;_,
in which case

T,_ _ (C,k'_h.f + c_)PI_t (13)

(In the author's opinion, this assumption represents a conside__C_f faith, given that _j and T_ are

not formal twins.) From Eqs. 7, 11, and 13, a set of integral equations for the coefficients C_ follows, namely

where
_,_ - 2/_l_'l_',i (15)
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We now exploit the Taylor-series expansion of the test filter to obtain a simple approximation to Eq. !4.
For specificity, we use the filter of Eq. 1 and its expansion Eq. 2. Omitting details for brevity, we obtain the

ap_roxim_tion

= (r2- 1) + + 2L.O.E. + 0(12 ,2)= 2(r2- 1)r, + 2L.O.E. + O(12A 2) (16)

wheretheleading-ordererror(L.O.E.)termin isgivenby

= -- -- (17)

We conclude that

_ ni _ r2 _ 1 r2 - 1 ÷ O(12_'2) .... (lS)

We now assume that the highest order term is insignificant. It remains to show that the second term

(L.O.E.) onthe right-hand side of Eq. 18 is of lesser significance (on average) than the first. We almme

here that all quantities have been previously scaled by appropriate reference values, so that we are

only withdimensionless quantities. It particular, lengths have been scaled by the wavelength of the largest

eddies, and time has been scaled by the large-eddy turnover time. From Eqs. 8 and 2, to leading order in

_, the resolved turbulent stresses are given by

_ £o = 5_ " + O(A 3) (19)

In scaled _ables, on the basis of reasonable assumptions and approximations (omitted for brevity_, it _ be

argued that the L.O.E. above is relatively unimportant whenever the dimensionless frequency fl __ _<_t

(provided. the filter is of first- or second-order, as will be shown). Specifically, for example, if flc_ 0il, an

entirely reasonable value in practice, then, Eq. 18 is approximated simply as

£'J (20)
1"i./ ,_ r2 _ I

Remarkably, Liu et al.7 arrive at a result similar to Eq. 20 from ezperi_ent_ measurement_ in s turbulent

jet. Spec'_cally, they obtain several component_ of the SGS stress tensor of a jet by two-dimensional
particle velocimetry. Whereas eddy-viscosity closures correlate poorly with the measured residual _,

the resolvedstressescorrelatewell.They propose the simple stress-similaritymodel "_

_',# - cL£,j (21)

where the coefficient c_ is empirically derived. For r - 2, they obtain CL ffi 0.45 :k 0.15 for a "clipped n (no

backscatter) SGS model by matching the exact and modeled SGS dissipation rates. For a model without

clipping the optimal coefficient is approximately unity (Menevesu, personal communication). Either way,
their result corroborates our observation that the residual and resolved turbulent stresses should be highly

correlated.

The implications of our present results for the practice of dynamic SGS modeling are both troubling

and hopeful. Because the effects of numerator and denominator of the modeled residual stresses essentially

"cancel" in the present analysis, dynamic SGS models, viewed in the present light, are ultimately independent

of the form of their underlying model (whether Smagorinsky or otherwise)! This unanticipated result suggests
that the whole concept of dynamic modeling needs re-examination.

In hindsight, it appears to the author that the basis of dynamic models in the Germano identity is
fundamentally flawed. The Germano "identity" is actually tautological, having been derived simply by

regrouping and renaming certain quantities from the starting point _ -- _. This is not to say that the idea

of dynamic modeling is flawed, only that there is no necessity for the Germano identity, as will be shown.
Moreover, not only is the Germano identity unnecessary, it results in the practical ditticulty associated with

the vanishing denominator of the model coefficient.



4 Alternate Approach to Dynamic Modeling _
. _ + - ..... .

In lightof the discussionabove,itisnaturalto ask: Can theresidualstressesbe modeledby theresoIued

turbtd_t stresses without appealimJ to tI_ Germano ident_f _=

By applying the general Taylor expansion Eq. 3 to Eq. 6, we obtain

nj = (_ 2c_)u_u__+ (c_c2 , ,, , ,, 3_ _ 3cS)(UiU#+ ujul)A + H.O.T. (22)

where H.O.T.denoteshigherorderterms.BecausetheSGS-egressW _+jarisessolelyfromthequadratic

nonlinearityoftheNS equations,itisquadraticatleadingorderinA, proeidodthatthefilterisofeither

_'st- or second-order. On the other hand, if the filter is of ord_ n > 2, then r+#is of leading order n. Because
the Smagorinsky model is of second-_ in/(or equivalen +tJy,in_A), it can be concluded immediately from
Eqs. 10 and 22 that the model is appropriate only in the context of tint- or second-order filters. Moreover,
the use of S_y-bmed SO8 models b_tota_v _-with _ai filters (which as we have said
pmviotm|y, c_ be eoaddered of infinite ordor). _udsco!_mlail_-ho_-_em of whether filtori_
k k-.compLished in spaceor in:the tlme domain. Our rmultm &Im_ by,eq_erimen_ evidence. Liu
,t _1.7s_l _ _.:b_+ _ n__d _ w_e__t. _ comisten_ witheither
Gatminn or phyakal-demam top-hat Site, (both of _m _der in _,r terminology). On the other

hand, negligible correlations exist when a sharp cut-off filter b tmedin Fourier space (i.e., a spectral filter in

our terminology). +

Of fundamentalimportancein dymmmie modelsis_ _ turbulentstresstensor£ij (E<I.8). As
mentionedpreviously,the resolvedturbulentstressebc_:bt_dlmctly computed by filteringthe resolved

velocityfiekk_+. Let uan_ _ _ aualog_otm__lyto_F._t.219abmre. To thisend,we presume thatthe

gridand testfiltersdifferonlyintheirrespectivefilt_widths.More precisely,ifthegridfilterisdefinedby

Eq. 3,thenthetestfilterisdefinedby

F [u(t,z_,A] = u + cx(rA)u' + e2(rA)=u " ÷ cs(rA)_u " -I-... (23)It(t,z-')

withthesame coefficientsc+asinEq. 3.From Eqs.3,8,and 23,and withtheaidofMathematica,itfollows

that

= (It_ ....._c:_S)(u;_; ÷ _;_')A s + ILO.T. (24).c,_ (@- _),,_,,;(_÷(_o.-, 2_r _+ ....... - '"
_m• c_._ of Eq.22and_. U, we+concludethat_ _S _ canbeappro=m_tedtoleading
orderby theresolvedstressesscaledby r=;thatis,

+-+__ _ (25)

E,+= _,#- _ (2o)

From Eqs. 22 and 24, we obtain

E_ [_(_ _)+c,_(3-r)-_]+'" '"= - A (u_u#+ uSui)+ H.O.T. (27)

From Eqs.22 andT/',we immediatelyconcludethefollowing:....::- +
-.;,+ • . ,

L._Ifthefilterisof_etherfirst-orJeeud,ot_leri,A, thentheappro_dmttionerro_isofhigherorder(3)

- mlmaletlm_C,S_tmm(2), mmdtbe _q_p_ is lll_Tto be _m_ly accum_ (Ov, m additioml
constraints to be addressed ahortly). :+

2, On the otherh&nd, foran3rfilterofordern i> +2,theapproximationerrorb ofthe same orderas _"

itself;hence,_"islikelytovanishinthe noiseoftheapproximation.
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3. If the filter is of order two (el "-- 0.0, C2 _ 0.0) then

Ei_ 3c3(r 3 , - , ,,.= - 1)A (uiuj + u_ui ) + H.O.T. (28)

:: 4. Far from being inadmissible, as implied by the conventional dynamic modeling approach, :r:= 1 is
.... optimal for second-order filters in that the leading error term vanishes.

=_:o5_ Because the residual stresses can be approximated directly from the resolved turbulent stresses, the
Germano identity is unnecessary for the development of dynamic SGS models.

5 Discussion

Although, for brevity, the present results were derived using time-domain filtering, .similar resuJ_ i_d
have been obtained for spatial filtering, albeit by more arduous mathematics. For example, Eq. 19 is the

time-filtered analog to the space-filtered result of Clark et.al. 3 as interpreted by Speziale 11, who reports that

.... = f °(A3) (29)

$1though Eqs. 20 and 25 are similar and in reasonable agreement for _oderately large r, they _not

identical. When_ the difference? Because the former originates from the Germano identity and _ _te)r
explicitly avoids it, we speculate that the discrepancy fo]10ws from the assumption that rij and Tij of'_: _7

can both be modeled by formally identical models, despite some formal dissimilarity.

If both analysis and experiment conclude that the residual stresses correlate closely with the :{{x_-

putible) resolved stresses, then it is tempting to suggest for LES the use of SGS models that contain only
scale-similarity terms. However, it is well known (e.g., Liuet al.7), that scale-similarity models alone/arein-

su(Bciently dissipative, and such calculations are almost _anteed to blow up, particularly if the numerical
scheme is non-dissipative. Our interpretation of the situation is as follows: the SGS models of LES must
unfortunately play two roles: one physical and one mathematical. Whereas scale-similarity models appear
sufiicient to capture the physics of SGS energy transfer, additional dissipation (e.g., a Smagorinsky-like term)

is n_essary for mathematical reasons; i.e., to stabilize the numerical scheme whenever resolution is marginal.
These roles are somewhat separated by mixed models (e_g., Bardina2), which include both scaie-s_arity

and dissipative terms.

Although our results are completely consistent with the experimental results of Liuet ai.7, they are
only partially consistent with the DNS results of Piomelli _t aL9, whose a priori tests show good agreement
between modeled and exact stresses both for a mixedimodel with a Gaussian filter and for the Sma_oFinsky
model with a sharp cut-off filter. Whereas the former result is consistent with our findings, the latter is not.

__Iowever, as Piomelli et al.9 are careful to point out: i_he fact that the SGS stress is essentially zero when
the cutoff filter is used on the present [DNS] grid indicates that, with that filter, the grid may be capable of
resolving the Reynolds stress and no model is needed?' Thus, the inconsistency may be more apparent than
actual. We are currently conducting a priori tests to further validate our present analysis.

6 Conclusions

1. Mathematically tautological, the Germano _identity" is suspect as a basis for dynamic SGS modeling.

2. A practical ditilculty with dynamic SGS modeling, manifested in the vanishing denominator of the

model coeftlcient, is directly attributable to _euse of the Germano identity.

3_ The Germano identity is not only problematic, it is _ unnecessary basis for dynamic SGS models.

4. For first- or second-order filter operators, the computible resolved turbulent stresses, when properly
scaled, closely approximate the residual stresses, without appeal to the Germano identity.



5. In general, filters of higher than second order am'incons_ent with the Smagorinsky SGS model.

6. In particular, spectral flJtarl are inconsistent with the Sm_orinsky SGS model.

7. In LES, the SGS model plays two roles: one physical and one mathematical. To separate these roles,

mixed models should be;_l_tsd. In mixed models, the scale-similarity term captures the physics

and the dissipative term _ve._n_ n_eric_ iustabUit_? i_on experience with LES reveals that the
scale-similarity term al_°iS h_su_dent. .........

8. The scaling of the scale-_'_m of mixed modeled'depend on the choice of the parameter
r relating grid and test filter widtha. This has been overlooked in practice.

9. A new model for the dissipative term, directly based on the computible resolved turbulent stresses, is
sorely needed.

_i̧ _

Acknowledgements

The author is grateful to Drs. Gordon Edebacher of Florida State University; Kristine Meadows, Craig

Streett, Mlchele Macaraeg, and Bart Singer of NASA Langley Research Center; and Baesam Younis of
University College, London, for helpful _. He ia_gralaful to Dr. Sandip Ghosal of Los Alamos
National Laboratory, to Dr. Klam Adams ofZTH hf_kad, and to Prof. Charles Menevean of

Johns Hopkins University for beneficial e-mall discussions and rderences regarding d_zmic SGS modeling.
Special thanks is due Prof. Ui{o Piomeiii of the University of Maryland for hii time, insists, suggestions,
clarifications, and numerous rbferences. Any confusion that remains is entirely the author's.

References

Ill A. rmd   m/or Sp -Ve , BerUn,1 0.

[2]J. Bardina, J. H. l_iger, and W. C._Ids, _Imp_ Subgrid ScsleModels for Large Eddy
Simulation," AIAA l_r No. 80-1357, 1980. :

[3] R. A. Clark, J, H. _: and W, C. Reynol&, __ of Subgrid-Scale Models Using an Accu-
rately Simulated 'I_rbulznt Flow," J. Fluid M_Jt., Voi: 91, i979, pp. 1-16.

[4] D. A. Compton and J. A. Eaton, "Development of Near-Wall Statistics in a Thr_-Dimensim_ Turbu-
lent Boundary Layers," in Thr_-Dinmnsional BoundarlI Lal/ers, FED-Vol. 237, ASME, 1996.

[5] M. Germano, _ktrbulmce: The F_ Approach," $. _ Mech., Vol. 238, 1992, pp. 325-336.

[6] M. Germano, U. Plomelli, P. Moia, :aad W. H. C_boti _A Dynamic Subgrid-Scale Eddy Viscosity
Model," Phlts. Fluids A_ Vol. 3, 199L pp. 1_0-1768. _" '_ _ d

(7]S.Liu,C. Menevean,and J.Katz;"On theP.roportielof_arity Su_d-Sf, a!e Models asDeduced

fromMeasurementsina TurbulentJet,"$.F_id Med_,*VoL 275,No. 83,I_, pp.83-119.

[8]P. Moin and J.Jimenes,"Large-EddySimulationof Complex TurbulentFlows,"AIAA Paper No.
93-3099, 199_L •

[9] U. PiomeUi, P. Moin, and J. H. Ferziger, _Model Consistency in Large-Eddy Simulation of Turbulent
Channel Flow," Phys. Fluids A, Vol. 31, No. 7, 1988, pp. 1884-1891.

[10] C. D. Pruett, _Time-Domaln Filtering for Spatial Large-Eddy Simulation," to be presented at the 3rd

Symposium on "l_r.amfitiomfl and Tttr.bulent Com_F .10ws, Annual Summer Meeting of the Fluids
EngineeiSng Division of LtheASME, Vancouver, BC, Jdiie*2_-26,1997.

[11] C. G. Speziale, _Galilean Invariance of Subgrid-Scale Stress Models in the Larg_Eddy Simulation of
Turbulence," J. Flu/d Mech., VoL 156, 1985, pp. 55-62. _

[12] 1_ D. Strum and D. E. Kirk, First Principles of Discrete 511_tmns and Digital Signal Processing, Addison-
Wesley, New York, 1988.


